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NONADDITIVITY OF INTERMOLECULAR FORCES: EFFECTS ON

THE THIRD VIRIAL COEFFICIENT*

_1,

A. E. Sherwood,’ Andrew G. De Rocco, and E. A. Mason

Institute for Molecular Physics, University of Maryland

College Park, Maryland

ABSTRACT ~ 6
<53/

The effects of nonadditive three-body forces on the
third virial coefficient C(T) are examined. Corrections to
the dispersion and repulsion pair potentials are taken,
respectively, from third;order perturbation theory without
exchange (triple-dipole) and from first-order perturbation
theory with exchange. The repulsion is examined for two
specialized models, a one-electron Gaussian model and an
electrostatic distortion model. The results for the non-
additivity are shown to agree reasonably well with the quantum-
mechanical results on one- and two—electron atoms. The magnitudes
of the corrections to the repulsion and dispersion energies
are of comparable magnitude but opposite sign for the ranges
of interatomic separations of interest. Similarly, the correction

to C(T) for repulsion nonadditivity is of opposite sign but

* Supported in part by the U.S. National Aeronautics and
Space Administration (Grant NsG-5-59).
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ii
comparable magnitude to that for dispersion nonadditivity in
the temperature range of interest., The net correction, however,
is of experimental significance, and it is suggested that care-
ful experiments near the maximum in C(T) would be useful. The
net correction to C(T) is unfortunately sensitive to the choice
of the pair potential model, so that advances in knowledge of

three~body forces from C(T) will probably depend on improvements

first being made in knowledge of two-body forces.




I. INTRODUCTION

One of the favorite simplifying assumptions of molecular
physics is the pairwise additivity of the intermolecular potential.
Although the nonadditive effects are often small, it has been
known for some time that interesting phenomena are under their
control; for example, polymorphism in the solid state.1
Crystal properties, however, are not well suited for the study
of nonadditive effects, because so many atoms or molecules
interact simultaneously that the problem becomes very complicated.

The third virial coefficient, on the other hand,
presents a theoretically simple and experimentally accessible
property which depends on no more than the three-body interaction,.
It is perhaps the simplest case in which nonadditivity might
be studied. Previous investigators have examined the nonadditivity
of the long-range dispersion forces,z-5 and its effect on the
third virial coefficient.ﬁ--9 No comparable study of the effect
of nonadditivity of the short-range repulsive forces on the
third virial coefficient has yet been made, but an indication
has been given that the effects are not negligible.8

It is the purpose of this paper to investigate the
influence of the three-body nonadditivity of the repulsive forces
on the classical third virial coefficient.

In the following sections we first consider the theory
of three-body forces for the purpose of formulating a reasonable
model for the interaction of three atoms which includes non-

additive contributions from both the attractive and the repulsive




components. We then use the model to study the behavior of the
third virial coefficient as the components and parameters of the
model are varied. It is found that the effects upon the third
virial coefficient due to attractive and repulsive nonadditivity
are of comparable magnitude but opposite sign in the temperature
range of interest. Furthermore, the results are sensitive to the

form assumed for the two-body potential.

II. INTERMOLECULAR POTENTIAL MODEL

It is well to mention at the outset that the potentials
used in molecular physics, even under the assumption of pairwise
additivity, are really only models whose connection with funda-
mental theory is somewhat distant. In particular, the long-
range pair potential is borrowed from second-order perturbation
theory without exchange, and the short-range repulsive part of
the pair potential is borrowed from first-order perturbation
theory with exchange. Terms arising from second-order perturbation
theory with exchange are commonly ignored, even though they

10-1 . . . .
3 Various sins of omission and

are probably not negligible,
commission of this type are hopefully compensated by the use of
adjustable parameters in the model.

It has been customary in computing nonadditive corrections
to the third virial coefficient due to the long-range potential to
include only the so-called triple-dipole term in the potential.és"9

This corresponds to a third-order perturbation calculation without

exchange. We propose to investigate the short-range potential to



obtain the nonadditive correction corresponding to a first-
order calculation with exchange. Terms involving second-order
exchange are ignored, just as in models of the pair potential,

so that we write the total potential ¢ as
® = q’rep + AcPrep t Pgais A(pdis’ (1)

where ¢ and Pqig 2aTe the first-order short-range repulsion

rep
energy and the second-order long-range dispersion energy,

respectively, and A9 and Z&@dis are the nonadditive contribu-

rep
tions. Many terms have been omitted from Eq. (1); to be
consistent, the equation should probably include all terms
through a third-order three—-body exchange term.14 Nevertheless,
the terms included do give the correct asymptotic behavior

at very small and very large separations. Most of the omitted
terms probably make their main contributions at intermediate
separations, and this can perhaps be allowed for by the use of
adjustable parameters. In any event, it does not seem consistent
to include second-order exchange terms in the nonadditive part

of the potential unless corresponding terms are included in the

pair potential.

The nonadditive second-order exchange energy appears to

play a decisive role in the determination of the relative stability

of the rare gas crystals,15 whereas the additive second-order
exchange energy does not. This cannot be construed as an
argument to include such nonadditive terms in the present model,

however, which is designed for the study of the third virial




coefficient. The reason is that it is only the relative

crystal stability which has been investigated, and this depends
explicitly on the angular dependence of the nonadditive second-
order exchange energy, the additive part contributing essentially
equally to the energies of both the hexagonal close-packed

and the face-centered cubic structures. If the absolute value

of the lattice energy were to be calculated, then it would

be inconsistent to include the nonadditive contribution without
the additive contribution as well, just as in the case of the

third virial coefficient.

A. Dispersion Energy

We now briefly review the theory of the dispersion energy
for later use. This energy can be computed either by a full
quantum~-mechanical treatment or by the use of a simple semi-~
classical picture of polarizable oscillators. In the latter
treatment each atom is pictured as an oscillating dipole which
induces an instantaneous dipole in its neighbor, and when
averaged over time this mechanism leads to a net attraction of

the form

- . C
®dis T 7 8 (@)

where C is a constant and R is the interatomic separation.
When three atoms are considered, the induced dipoles on the two

neighbors interact with one another and produce a nonadditive



contribution of the form

= Y 3 (1+3 cos 6
(Ry5R13Ry3)

cos 6, cos 93) , (3)

A94is 1 2

where Rij represents the separation of atoms i and j, and 91,
92, and 93 are the interior angles of the triangle defined by
the three atoms. Expressionsof the same form as Egs.(2) and (3)
are obtained from the quantum—mechanical treatment.

It is clear that a relation should exist between v and C
in terms of the properties of the atoms. The simple semiclassical
picture does not give this relation very accurately,16 but a

quantum-mechanical treatment yields the result,s’6

v =~% aC , 4

where o is the atomic polarizability.

B. Repulsion Energy

A complete quantum-mechanical calculation of the
repulsion energy nonadditivity is very difficult, and calculations
have been carried out only for one- and two-electron atoms.17-—19

We therefore pass immediately to simplified pictures for this

interaction.

1. One-Electron Gaussian Model

14,15

Jansen has shown how the quantum—-mechanical results

for one-electron atoms can be extended to many-electron atoms with




closed shells, by means of an effective one-electron model
with a Gaussian charge distribution. The problem is then the same
as for three hydrogen atoms with parallel electron spins, having

atomic wave functions of the form

3/4
w() = ( BYm / exp(-p2r2/2), (5)

where B is an adjustable parameter‘and r is the distance of an
electron from its nucleus. Jansen obtained an explicit expression
for the first-order interaction energy of a three-atom system

in an arbitrary configuration. The Gaussian model is appealing
because all the necessary two-and three-center molecular integrals
can be evaluated in closed form.zo Even so, the final result

is very cumbersome and will not be given here. A more useful
result can be obtained by an asymptotic expansion of Jansen's
expression for the case of a near-equilateral triangle with

fairly large interatomic separations. The leading term of the

nonadditive energy is

-1 -1 -1
A9 pep =~ 28755 813093 [Rl(zs) + Ry13yt B3(12)
-1 . -1 . -1 4, . ...
- Ry - Ry5T -Ryg ] + 008 ;1) + , (6)

where Aij is the overlap integral,

2 2
A ij = exXP (- B Rij /4) , (7)

Rij is the distance between atoms i and j, and Ri(jk) is the



distance between atom i and the midpoint of the line joining atoms
J and k. In these expressions, all distances are measured in
units of the Bohr radius a , and the energy is given in atomic
units, ez/ao.

Equation (6) gives an accurate representation of Jansen's
full expression for nearly equilateral triangles from large
separations down to about 0.8 0 , where o is the value of the sep-
aration for which the pair potential is zero, ¢(o) =0. It is
poorer at smaller separations, but here the nonadditive effects
are less important because of the steep rise in the pair potential.
Furthermore, the one-electron Gaussian model itself begins to fail
at small separations, because of the increasing importance of

multiple~exchange effects.14

Equation (6) also describes the
shape dependence of the repulsive nonadditivity reasonably well
for triangles with no angle larger than 100 deg. It fails badly
for nearly linear isosceles triangles, however, because the term
R3(12;1 diverges in the asymptotic expansion. These shape effects
are illustrated in Fig. 1, which was calculated at R=0 for argon
(3=0.33, Bo=2.1). In the calculations of the third virial
coefficient to follow, we shall argue that near-linear configurations
are relatively unimportant in the integration over configurational
phase space. The repulsive nonadditivity for such éonfigurations
can therefore be roughly set equal to zero, as shown by .the
dashed curve in Fig. 1, with little effect on the integration,
Equation (6) is still not in its most useful form, since

it depends explicitly and sensitively on the Gaussian model.




It is better to use the Gaussian model only as a device for
obtaining a relation betweenJAQrep and the pair potential. 1In
/9

model-sensitive than either merep or Qrep alone. Such a

other words, the ratio Ag would be expected to be less

rep’ *rep

situation exists for the dispersion energy, and is summarized
by Eq.(4). An expansion of the full Gaussian model pair

potential yields an asymptotic result analogous to Eq. (6),

p2 2\ 1 3
Prep - R [3 -(;) (,5R+ﬁ :,+ O( AT+ =+, (8)

which is a good approximation to the full Gaussian result. It
can also be used to point out a defect in the model; namely that
@rep passes through zero at SR=~=3.5, goes through a minimum, and
then approaches zero asymptotically from below. This attractive
region, spurious from the point of view of a first-order parallel-
spin calculation, probably is a consequence of the approximate
wave function used.

In the region of most interest for virial coefficient
calculations, which turns out to be 1.5< fR< 2.5, the factor in
brackets in Eq.(8) varies only from 1.7 to 0.7, so that it is a

fair approximation to rewrite Eq.(8) as

2
~ B

As a quick check, for equilateral triangles Egs. (6) and (9) yield

:EEEER = -9 ('25_ _]_> A, (10)
z¢rep 3



which reveals a simple proportionality to the overlap integral.
Rosen17 found a similar proportionality in his quantum-mechanical
calculations for three helium atoms, in which hydrogenic atomic
wave functions were used.

The general combination of Egs.(6) and (9) yields

291 9 (9,5913%23)

= (R, R-,R.,.) 2
erep (¢12+¢13+¢23) 12713723

|
|

X
(11D

-1 -1 -1 -1
X [1(23) + R2(13) + Ry(12) ~R1p - Ry3 "st] ’

in which we have eliminated allzxij in favor of the corresponding
¢ij by means of Eq.(9). For our virial coefficient calculations
we wish to use the Lennard-Jones 12-6 and 9-6 pair potentials,

which are

o(® = 4c [(/R2 - /m®], (122)

i

?(R)

el o/m°- w/me], (12b)

where € is the depth of the potential well and ¢(o0) = 0. For

these potentials Eg. (11) takes the forms

* -11/2
“Prep _ _ 4(emyd (R]oR13Rp3) y
29, (r¥ 12, g*-12, p*-12,
€p 12 13 23

-1 -1 * =1 * =] * =1 *~1
X[ R{(23)* Bo(13) *Ra(12) ~ Pz~ Rz " Bag ] , (13a)




. 10

Ao 1 RS F2)
____IE.E = - (276*)2 12 13 23 x
ZCPrep (R*-g r¥ -9, rX -9
12 * F13 t Rz
* -1 * *-] _*_7 *_7
X [?1(23) 2(13) R3(12) 9 ~Ryg” —~Ryqg ] , (13b)

* . R .
where Rij = Rij/o and €*is a dimensionless energy parameter,

e* = eo/e’, (14)

For comparison, the corresponding result for the dispersion

energy for these pair potentials is

A¢dis 3 (1+ 3 cos 61 cos 92 cos 6 )
== Q ’ (15)
*Pais  * G T RALYe RARFE LALNE LA
12 F13 Bao3 t izt Rog
where
a¥ = O6/03 (16)

is a dimensionless polarizability parameter.

The accuracy of the foregoing equations can be assessed
by comparison with the results of complete quantum-mechanical
calculations, This is done in Fig.2 for the case of three helium
atoms arranged in an equilateral triangle, for which the calcula-
tions of Rosen17 are available. Both Eq.(13a) and Eq.(13b) agree
very well with Rosen's calculations ; even Eq. (10) with Bo = 4.0
agrees surprisingly well in view of the rather ruthless

approximations made. Also shown in Fig.2 are some results for an
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electrostatic distortion model, which is discussed in the next
section.

A similar comparison is shown for helium, argon, and xenon
at R=0 in Table I. The distortion model is poor for helium, but
works reasonably well for the heavier gases. Also shown in
Table I for comparison are the values of AQdis/z:@dis as
calculated from Eq.(15). They are opposite in sign tOlﬁQrep/zl@rep
but of comparable magnitude, and change by about the same ratio
in going from helium to argon to xenon,

We turn now to a description of the distortion model and

some discussion of its properties and utility.

2. Electrostatic Distortion Model

The ‘motivation for this model is the Hellmann-Feynman
electrostatic theorem,21 which states that the forces on the
nuclei of interacting atoms are given correctly by classical
electrostatics, provided the correct electron probability distribu-
tion is known., The electron distribution is of course governed
by quantum mechanics, not classical mechanics. The repulsion
between two closed-shell atoms at small separations results from
the quantum-mechanical distortion of the electron clouds from
their original spherical symmetry. This distortion arises
primarily from the Pauli exclusion principle.

The aim of this section is to concoct a simple model which
will mimic the distortion of the electron clouds and which will

still be mathematically tractable. Such a model can then be used



12

to calculate the full three-body repulsive interaction in terms
of two-body interactions, just as the model of polarizable
oscillators was used to calculate the three-body dispersion
energy in Sec.IIA., Reasonable results can be hoped for if the
model is used only to calculate relations among different inter-
actions, and not to calculate any interaction energy in absolute
terms,

The model we have used considers that the Pauli
distortion displaces the centers of electronic charge from the
atomic nuclei, and that this distortion can be described in
first order by an electric dipole. The magnitudes and directions
of the dipoles on the interacting atoms are of course related to
each other, but the relation is complicated and has to be found
by a detailed quantum-mechanical calculation of the charge
distribution. This calculation is avoided by using the model
to specify the distortion dipoles. It should be noted that the
situation is not strictly analogous to the dipole model for the
dispersion forces, where only one dipole need be specified and
the others then follow by electrostatic induction. Here the
problem is to determine the other dipoles when one dipole is
specified, which can be done by making use of the known results
for pair interactions.

Consider two interacting atoms 1 and 2 a distance R apart,
with atom 1 having a specified distortion dipole of magnitude m,
at an angle Y1 with respect to the line of centers, as shown in

Fig.3. A corresponding dipole exists in atom 2 of magnitude m,
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and orientation angle Yo related to Y by
'Yz =(D"'yl ) (17)

where  is an unknown phase angle. We take m, to be proportional

to m,, with the proportionality factor a function of R,
m, = m, f(R) . (18)

The interaction energy of two coplanar dipoles is

-3 . R
¢ (R) = mm, R ~(sin Yy Sin v, -2 cos y; cos v,), 19

so that the average repulsive interaction energy of atoms 1

and 2, obtained by averaging Y1 around 27w, is

2 f(R)R'3 cos w . (20)

(V][

Prep =~ 3 M

rep 1

In order that the energy be repulsive we pick 7/2 <w< 3n/2.
If we now equate this result to the repulsive term of some

empirical pair potential, we can determine m, and f(R). For

1

example, for the 12-6 potential we can write

3
m 2 =—8€0——, (21a)
1 -3 cos w
f(R) = (O/R)g. (21b)

Some of the R dependence could have been put into my, but this

complication is not needed. For the 9-6 potential we write

2 9egd
m -

1 -2 cos o’ (222)
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£(®) = (o/R)C. (22b)

It will also be convenient to take w=Tm .,

We can now use these results to discuss the interaction
of three atoms in an arbitrary configuration, as shown in Fig.4.
Let us begin by calling atom 3 the specified, or "driving",
dipole. The driver controls the instantaneous magnitudes and
positions of the distortion dipoles of atoms 1 and 2 according
to the rules obtained for pair interactions. It is obvious

from Fig.4 that

Y] S+ 20; - Vg (23a)

- 26

]

Yo = Wg 9 = V3- (23p)

The 1-3 pair or the 2-3 pair taken alone would give the previous
pair potential when the dipole in 3 was rotated through 2m. A
nonadditive contribution arises from the interaction of the

distortion dipoles in atoms 1 and 2, and is

3

1 2 -
A¢12 =5 mg f(R13)f(R23)R12 cos 293 , (24)

where the average over Y3 has been performed, and the phase

angles have been chosen to assnre that the sign agrees with the

quantum-mechanical result for a triangular configuration.
Similar results can be obtained by letting atoms 1 and 2

in turn become the drivers, and since

1




15

we obtain the final result,

13723712 3 12723713 2 12713723

(£10Ff0oReo cOS 20, + £10fo R cos 20, +f..f. . R.-3 cos 26-)
1

O~

= =3 =3 =3
rep (£19Ryg "+ f1gRyg "+ £53R5 ) 26)

where fij = f(Rij)‘ For equilateral triangles Eq. (26) reduces to

Ag
P = - I E®). (27)
q)rep '

This is of the same sign and magnitude as the corresponding result
for the Gaussian model, although the R dependence is somewhat
different.

/S for the distortion

The shape dependence of Ag rep

rep
‘model 1is conveniently illustrated by picking an isosceles triangle
configuration and using the 12-6 model for the pair potential. The

result is

A 9
72 - (g) e®, (28)

where R is the length of one of the equal sides, 6 is the angle

between these sides, and

g(6) = 1 (2 sin %69)—3 cos 2?152 (sin %6 )_9 cas 6 ] (29)
(2 sin % 6) + 2

©

This function is shown in Fig.5, where it can be seen that the result
is in qualitative agreement with the quantum-mechanical calculations

of Rosen and the Gaussian-model calculations of Jansen (shown in

?
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Fig.1). At 60 deg the nonadditivity is negative and the total
repulsioh is therefore smaller than the sum of the pair potentials.
At 180 deg, on the other hand, the nonadditivity is positive
and the total repulsion is greater than the pairwise sum,

Other properties of the distortion model have already
been discussed in connection with Table I. We now have two
reasonable models for A(prep’ the Gaussian and the distortion
models, and can turn to an examination of the effect of non-

additivity on the third virial coefficient.

III. NONADDITIVE CONTRIBUTIONS TO THE CLASSICAL

THIRD VIRIAL COEFFICIENT

The third virial coefficient of gases is of particular
interest because it involves the interaction of precisely three
molecules. The coefficient can be formally written as the sum
of two terms, C = Cadd + AC, where Cadd is the value calculated

under the assumption of additivity of pair potentials, and AC

is the correction due to nonadditivity, given by

AC = -@x°N_? /3) fff exp (-39 ;/KT) X

X [exp (—Aq)/kT)-IJ R;5R gRyadR, ,dR; 2dR, 4, (30)

where N 1is Avogadro's number. If Agp and hence AC are not too
large, it is possible to split AC into dispersion and repulsion

components by a two-variable Taylor series expansion in the
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parameters characterizing the strengths of the nonadditive
components of Ag. Thesé parameters are a* = a/03 for the
dispersion and (e*)% = (eo/ez)% for the Gaussian-model repulsion.
The distortion-model repulsion has no strength parameter, but a
dummy parameter can be inserted and later set.equal to unity.

This parameter can still be denoted as (e*)%. Keeping only the

first two non-vanishing terms of the Taylor expansion, we obtain

* *
AC/boz EAC*=Q*(_§EA_(X‘(:_*> + (e*)%lié.é.c__% 4 - , (31)
0 3e™ 2,

where bo = ZWN°03/3, and it is understood that the derivatives

are to be evaluated at a* = 0, e* =o0.

Values of o* and e*

for the rare gases are given in
Table II. Since they are small, it is expected that Eq. (31)
will be accurate, This expectation is confirmed by the results
exhibited in Table III, where A C* calculated by Eq.(31) is
compared with AC* calculated by the full integral of Eq. (30),
for some typical values of a* and €*. The results from Eq.(31)

are correct within 5% for the 12-6 potential and within 8% for

the 9-6 potential.

A. Dispersion Nonadditivity

The long-range nonadditive dispersion contribution has
previously been calculated for both the 12-6 and « -6 potentials.am8
We now compute the same quantity for the 9-6 potential. The

nonadditive dispersion derivative for the 9-6 potential can be
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written as

(égg.) - 729 féf exp (-39,3/T%) x
X (1+3 cos 6 cas 6, cos Gy)(xy)_z(R*)'—4 dxdydR*, (32)

where ¢ . * ==¢(Rij)/é, T*= kT/e, and the integration variables

ij
in Eq. (30) have been replaced by

xR*

]

Ryp/0

*
yR R13/o ,

*
R R23/o .

The limits of integration are as shown in Fig.6.

The integral in Eq. (32) has been evaluated numerically
by a computer program analogous to that used earlier for the
12-6 potential.8 The numerical results are tabulated in
Table IV, and are estimated to be accurate within 0.2% with
respect to errors of truncation and interval size. The results
are similar to those already noted for the 12-6 and -6
potentials —the dispersion derivative is always positive and

decreases with increasing temperature.

B. Repulsion Nonadditivity

For an n-6 potential the nonadditive repulsion derivative
can be written as

ooly

aac* _ 36 .
[8(5*)5] o T* JCJ;Jf exp (=29, /TY) X

1-y

0
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X gn(x,y,R*)xy(R*)5 dxdydR*. (33)

The shape function g, will vary according to which model is

chosen for the repulsion nonadditivity. For the Gaussian model

we have
g, = - An(xy)(1—n)/2(R*)(1—3n)/2 [d1(2;; + d2(13;1+ da(lgi-
- xlo g1l 1] , (34)
with
Ag = (27)3/2/4, Ay, =16,

2 _ .2 2_ 1
2d1(23) =X +y 5

2 _ 2 _1 2
2d2(13) =X+ 1 5 vy,

2 2 1.2

For the distortion model we have

g

_ =3 /5%y 3—2N 6-n 6-n
n = Bn(xy) (R™) [y cos 29x-+x cos 29y

+ (xy)6_n cos 26] , (35)
with

B, =3/4 , B = 4/9 .

9 12

An examination of g, for the Gaussian model suggests

difficulties in two limiting conditions: for x — O Wwhere x_l-—>m ,

and for x — 1/2 where dl(zgg'—%>m. The limit x — 0 turns out
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not to be troublesome, however, since this corresponds to a

small separation of two molecules and the exponential factor
makes this region of phase space essentially inaccessible. For

x — 0 but xR*kil, i,e., large R*, the integrand still will be
damped out since g, diminishes rapidly with increasing R*. We
avoid the region near x =1/2 by the arbitrary device of setting
g, = 0 for d1(23) € 0.4196, which corresponds to picking 6 { 100 deg
for isosceles triangles as was shown by the dashed curve in Fig.1.
It has already been pointed out in connection with Fig.1l that the
behavior of our approximate Gaussian model is unreasonable for
nearly linear isosceles triangles, and that some kind of approx-
imation is necessary. We choose 100 deg as the cutoff angle
merely because this gives a reasonable approximation to the
results for the full Gaussian model.

We have investigated the effect of varying the cutoff
angle between 90 and 110 deg, and the results are indicated in
Table V. The variation in the nonadditivity derivative relative
to its value at 100 deg is about * 10% for the 12-6 potential
and about * 15% for the 9-6 potential. We regard an uncertainty
of this amount as tolerable, since the model itself is subject
to the possibility of a larger error, even for nearly equilateral
triangles.

The calculated values of the nonadditive repulsion
derivative are tabulated in Table VI for the Gaussian and dis-
tortion models with the 9-6 and 12-6 potentials. Truncation

and interval size errors are estimated to be less than a few
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tenths of one percent. The large differences in the numerical
values for the Gaussian and distortion models are only apparent;
the values of (e*)% to be used in Eq. (31) are formally unity for
the distortion model, but for the Gaussian model have values 1like
those given in Table II. Even a cursory examination of the results
in Table VI, and a comparison with those given in Table IV,

shows that the repulsion and dispersion nonadditive effects tend

to cancel each other.

IV. COMPARISON WITH EXPERIMENT

It is convenient to compare our results with one another
and with experiment in terms of the Boyle parameters, introduced
by Kihara22 and further discussed by others.23 Temperatures

are measured in units of T the temperature at which the second

B’

virial coefficient B is zero, and volumes are measured in units

of the Boyle volume Vg

vy = (T %) , (36)
T

For a given pair potential, TB and Vg are proportional to € and

03, respectively. The proportionality constants TB* and VB* are

defined as

* x
T B = vB/bo R (37

B = kTB/e s v

and are listed in Table VII for the 9-6, 12-6, and « -6 poten-

tials.
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For any particular substance the Boyle temperature and
volume are independent of any assumed potential model, and are
obtainable in principle from experimental measurements in the
vicinity of the Boyle point. Since such measurements are seldom
available, an alternative procedure is to fit experimental second
virial coefficient data to an assumed potential and then compute
TB and Vg from the empirical parameters of the potential. The
results of this procedure are not independent of the assumed
potential, but are nearly so if the potential is sufficiently
flexible to represent the data accurately. The Kihara core
potential22 is usually an adequate choice for this purpose, and

% .
and v * for various

B B
spherical core sizes. From these results it is possible to

in Table VIII are given the values of T

obtain the values of the Boyle point properties of the rare gases
given in Table IX. These are in good agreement with values given

previously.zz’23b

It is of some interest to report that the use
of the square-well potential instead of the Kihara core potential
gives agreement with the values of Table IX to within 1% for all
gases except krypton, for which the value of Vg differs by 2%.
The foregoing results have been used in drawing Fig.7,
where the experimental third virial coefficients of the heavy
rare gases (reduced by VB2) are shown as a function of T/TB,
together with the curves calculated for the 9-6, 12-6, and »-6
potentials on the assumption of pairwise additivity. It is clear

from this figure that the lower-temperature measurements lie well

above the calculated two-body curves; this is especially true for
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the =-6 potential, which also gives a poorer representation of
second virial coefficients than the 9-6 or 12-6 potentials. From
these results we conclude that nonadditivity corrections are
necessary.

It is less clear that other features shown in Fig.7 are
real effects which cannot be attributed to experimental error.
Perhaps the most obvious of these is the greater steepness of
the xenon data, but it would take only a 9% decrease in Vg to
put the xenon data into sensible agreement with the other gases.
In this connection it is worth mentioning that experimental virial
coefficients are usually obtained from gas compressibility
measurements by fitting a polynomial in the density to a
pressure-density isotherm. The third virial coefficient is
then the limiting curvature of the isotherm, and to expect an
accuracy of even * 5% in C(T) is perhaps optimistic, even for the
most precise compressibility measurements,

To calculate nonadditive corrections we need values of a*
and e*; these have already been given in Table II, as obtained
from 12-6 potential parameters. A plot of these values is given
in Fig.8, where it can be seen that (€*)% is approximately

. *
proportional to a’,
*\ 3 *
(N2 K a’, (38)

with K2£1.3. A relation of this sort is to be expected from

the theory of the two-body dispersion energy and the definition

*

of ¢ = ec/ez. According to the simplified London theory, the




24

dispersion coefficient is21

2

c =4e0 %2202 g, (39)

| o

where I is the atomic ionization energy. From this expression

and that for €* we find

KQ//% (31072 % (40)

which is indeed nearly a constant, although somewhat less than
1.3.

1f the values of a* and €* given in Table II are even
roughly correct, then deviations from the principle of correspond-
ing states, such as suggested by the data in Fig.7, are not
unexpected. However, for the sake of simplicity, and because
our nonadditivity model is only approximate, we have based our
numerical calculations on o = 0.05, which is the average value
for argon, krypton, and xenon. This choice implies (e*)%==0.065,
according to Eq. (38).

There is no reason to expect the nonadditivity parameters
for the 9-6 and »-6 potentials to be the same as those for the
12-6 potential, any more than the two-body potential parameters
are the same. It is not hard to find a relation among then,
however, by matching the second virial coefficient curves at

the Boyle point and using the results of Table VII, to yield

k * -
() g_g = 0.9(a");, g = 0.045,

]

1.4(a%) = 0.070,

*
(M) _g 12-6
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and

(e*)% = 0,9(6*)% = 0.0585.
9-6 12-6

00 =

We have taken (€%*) 6= 0, since we do not wish to make non~-
additivity corrections to a rigid sphere repulsion.

Results for the 9-6 potential are shown in Fig.9. The
dispersion nonadditivity correction alone raises the calculated
curve substantially above the experimental measurements. The
repulsion nonadditivity correction lowers the calculated curve,
but dominates over the dispersion correction to such an extent
that the final corrected curve lies below the uncorrected
pairwise additive curve, and is in poorer agreement with
experiment. Both the Gaussian and the distortion models give
essentially the same result for the repulsive nonadditivity
correction.

Results for the 12-6 potential are shown in Fig.10,
and differ conspicuously from the 9-6 results. Again the
Gaussian and distortion models give agreement on the repulsion
nonadditivity correction, and again the dispersion nonadditivity
correction alone raises the calculated curve too much, but the
net nonadditivity correction for both dispersion and repulsion
now gives a final corrected curve which lies above the uncorrected
pairwise additive curve, and which is in fairly good agreement
with experiment.

For the sake of completeness, results for the » -6 poten=

tial are shown in Fig.l1l. It is clear that this potential,
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while simple enough, is of only marginal value in studies of

empirical potential energy curves.

V. CONCLUSIONS

In this study we have employed two approximate models
for the QSPEqutivity of the three-body repulsion potential,
to study the gﬁfectiéf rébulsion nonadditivity on the third
virial coefficient. The two models give surprisingly similar
results for the third virial coefficient. Without attributing
too much significance to the models themselves, we feel that
the calculations justify two main conclusions:

(1) The correction to the third virial coefficient for
repulsion nonadditivity is of opposite sign but comparable
magnitude to that for dispersion nonadditivity, and the magnitude
of the net correction is of experimental significance.

(2) The nonadditivity corrections are sensitive to the choice
of the pair potential model.

The following third conclusion is probably also justified:

(3) The nonadditive effects are most pronounced at low
temperatures; accurate experimental values of C(T) in the region
of the maximum would consequently be very helpful in furthering
our knowledge of the three-body forces.

From these conclusions several inferences can be drawn,
as follows:

(1) No existing models are capable of giving reliable

information on three-body forces.
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(2) Advances in our knowledge of three-body forces are
probably contingent on improvements in our knowledge of two-body
forces, especially repulsion,

(3) At present, approximate models can serve only as

guides to the direction a proper theory should take.
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Table 1.

Comparison of the relative nonadditive

energy for helium, argon, and xenon in an equilateral

configuration at R=o0.

28

A%@p/zmrep

Model Helium Argon Xenon
Rosen - 0,0098 - -
Gaussian-12 - 0.0077 - 0,031 - 0.046
Gaussian-9 - 00,0090 - 0.036 - 0.054
Distortion-12 - 0.0556 - 0,056 - 0,056
Distortion-9 - 0,0556 - 0,056 - 0,056

B335/ Pyis

Oscillator + 0.0041 + 0.013 + 0.020




Table II. Nonadditivity parameters for the rare gases,
based on 12-6 potential parameters.

Substance o (e*)%
a
He 0.012 0.012
b
Ne 0.018 0.025
Ar€ 0.038 0.050
Kr© 0.044 0.061
xe® 0.058 0.074

a Reference 21.

b Obtained by fitting second virial data:
e/k = 36.1°, o= 2.774 &.

c

A. E. Sherwood and J. M. Prausnitz, J. Chem. Phys. 41,
429(1964) .
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Table IIY. Comparison of the full nonadditivity

integral for C* with the derivative approximation of Eq.(31).

12-6 potential 9-6 potential

kT a*= 0.05, (c*) % = 0.065 a* = 0.045, (e*);" = 0.0585
€

Integral Eq. (31) Integral Eq. (31)
0.5 4,54 4.62 -11.96 -11.00
1.0 0.433 0.439 -0.553 -0.515
2.0 0.115 0.117 -0,0959 . =0.,0879
5.0 0.0311 0.0321 -0.0344 -0,0317
10.0 0.0116 0.0112 -0.0255 -0,0240




Table IV. The nonadditive dispersion derivative for the 9-6

potential,

* anc*

T ()
0

0.50 463,014
0.55 283.428
0.60 188.585
0.65 133.708
0.70 99,604
0.75 77.164
0.80 61.697
0.85 50.620
0.90 42,427
0.95 36.200
1.00 31.358
1.05 27.515
1.10 24.411
1.15 21.867
1.20 19.752
1.25 17.974
1.30 16.462
1.35 15.165
1.40 14.042
1.45 13.062
1.50 12,202
1.60 10.764
1.70 9.615
1.80 8.679
1.90 7.903
2.00 7.252
2.20 6.222
2.40 5.446
2.60 4.843
2.80 4.362
3.00 3.970
3.20 3.644
3.40 3.369
3.60 3.135
3.80 2.932
4.00 2.755
5.00 2.128
6.00 1.745
10.00 1.047
100.00 0.157
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Table V. Effect of variation in cutoff angle on the
values of the repulsion nonadditivity derivative for the

approximate Gaussian model.

_ * * %]
, Cutoff {}’AC 73D |
T angle,deg 9-6 12-6
1.0 90 28.2 5.09
100 32.9 5.65
110 36.8 6.04
5.0 90 1.77 0.355
100 2.18 0.413
110 2.55 0.458




Table VI. Nonadditive repulsion derivative for the 9-6

and 12-6 potentials.

33

[BA c*/d (e i]
0

T Approx. Gaussian Model Distortion Model (e*=1)

9-6 12-6 9-6 12-6
0.50 -544.242 -96.539 -29.182 ~-7.161
0.55 -328.646 -57.934 -17.663 -4.364
0.60 -215.754 -37.830 -11.623 -2.890
0.65 -150,991 -26.354 -8.153 -2.039
0.70 -111,083 -19.313 -6.013 -1.512
0.75 -85.045 -14.738 -4.615 -1.167
0.80 -67.246 -11.621 -3.658 -0.929
0.85 -54.600 -9.415 -2.977 -0,760
0.90 -45,.322 -7.800 -2.477 -0.636
0.95 -38.325 -6, 587 -2.100 -0.541
1.00 -32.924 -5.652 -1.808 -0.468
1.05 -28,669 -4,917 -1.579 -0.,411
1.10 -25.257 -4.,330 -1.394 -0.364
1.15 ~22.479 -3.852 -1.244 -0.326
1.20 -20.185 ~3.458 -1.120 -0,295
1.25 ~-18.269 -3.130 -1.016 -0.269
1.30 -16,650 -2.853 -0.928 -0.247
1.35 ~15.269 -2.618 -0.853 -0.228
1,40 -14,080 -2.415 -0.788 -0.211
1.45 ~13.049 ~-2.240 -0.732 -0.197
1.50 ~12,148 -2.087 -0.683 -0.185
1.60 ~10.654 ~1.833 -0.602 -0.164
1.70 ~9,472 -1.633 -0.538 -0.148
1.80 -8.518 ~1.472 -0.486 -0.134
1.90 -7.734 ~1.340 -0.443 -0.124
2.00 -7.,081 -1.230 -0.407 -0.114
2.20 -6.058 -1,058 -0.351 -0.100
2.40 -5.299 ~0.931 -0.310 -0.090
2.60 -4.715 -0.833 -0.278 -0.081
2.80 -4,254 ~0.756 -0.252 -0.075
3.00 -3.882 -0.694 -0.232 -0.070
3.20 -3.575 -0.643 -0.215 -0.065
3.40 -3.318 -0.601 ~-0.201 -0.062
3.60 -3.100 -0.565 ~0.189 -0.059
3.80 -2,912 i -0.534 -0.179 -0.056
4.00 -2.750 ; -0.507 -0.170 -0.054
5.00 -2,179 f -0.413 ~0.138 -0.046
6.00 -1.836 5 -0.356 ~-0.119 -0.041
10.00 -1.216 | -0.256 ~-0.085 -0.033
100.00 -0.369 E -0.122 -0.039 -0.028
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Table VII. Reduced Boyle temperatures and volumes
for the 9-6, 12-6, and» -6 potentials,

. * E 3
Potential TB VB
9-62 4.5553 0.7153
12-6° 3.4179 0.8113
w -6° 1.1709 1.1738

% L.F. Epstein and C.J. Hibbert, J. Chem. Phys. 20,

752(1952) .
b Reference 21, pp.1114-1115.

¢ A_E. Sherwood and J.M. Prausnitz, J. Chem, Phys.
41, 429(1964).
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Table VIII. Reduced Boyle temperatures and volumes for

the Kihara core potential,

a

*
a TB* VB*
0. 3.418 0.8112
0.025 3.265 0.8255
0.050 3.126 0,8391
0.075 2.998 0.8523
0.100 2.880 0.8649
0.125 2.772 0.8771
0.150 2.671 0.8888
0.175 2.578 0.9002
0.200 2.491 0.9112
0.225 2.410 0.9219
0.250 2.335 0.9323
0.275 2.264 0.9424
0.300 2.198 0.9522
0.350 2.077 0.9711
0.400 1.970 0.9892
0.450 1.874 1.0065
0.500 1.788 1.0231
0.550 1.711 1.0392
0.600 1.641 1.0546
0.650 1.577 1.0697
0.700 1.518 1.0842
0.750 1.464 1.0984
0.800 1.415 1.1123
0.850 1.369 1.1258
a The reduced core a* is defined as a*= '%%53 , where

a is the core radius.
12-6 potential.

Note that a*= 0 corresponds to a
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Table IX. Calculated Boyle point properties for the

rare gases,

Substance TB(OK) vB(cchole)
Ne 123 21.8
Ar 408 40.3
Kr 576 49.0
Xe 770 66.2




Fig. 1 - Effect of configuration on the first-
order nonadditive repulsion energy for
the one-electron Gaussian model and

its asymptotic expansion, Eq. (6).
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Fig.

2 -

Comparison of different calculations of
the first-order nonadditive repulsion
energy for three helium atoms in an
equilateral-triangle configuration.

The curve marked "overlap'" comes from
Eq. (10); the curves marked "Gaussian-12"
and "Gaussian-9" come from Eqs.(13a) and
(13b) ; the curves marked "distortion-12"

and "distortion-9" come from Eq. (26).
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Fig. 3 - Configuration of two distortion dipoles

used to calculate the repulsion energy.







Fig. 4 -

Configuration of three atoms and their
instantaneous distortion dipoles, chosen
for the calculation of the repulsion

nonadditivity.







Fig. 5 - Configuration dependence of the non-
additive repulsion energy for the

distortion model.
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Fig. 6 - Region of integration for the third
virial coefficient. Solid lines enclose
the region in which molecule 1 is re-
stricted to move for a given separation R*

of 2 and 3, comnsistent with x ¥y 1.







Fig.

7 - Reduced third virial coefficients for the rare

gases, and calculated two-body curves for the

9-6, 12-6, and » -6 potentials. Experimental

data from the following sources.

Neon, ®: A. Michels, T. Wassenaar, and
P. Louwerse, Physica 26, 539(1960).

Argon, O: A. Michels, Hub, Wijker, and Hk.
Wijker, Physica 15, 627(1949); A
Michels, J.M.H. lLevelt, and
W. de Graaff, Physica 24, 659(1958).

Krypton,A:J.A. Beattie, J.S. Brierley, and
R.J. Barriault, J. Chem. Phys. 20,
1615(1952).

Xenon, J: J.A. Beattie, R.J. Barriault, and
J.S. Brierley, J. Chem. Phys. 19,
1222(1951) .

Xenon, l: A. Michels, T. Wassenaar, and P.

Louwerse, Physica gé, 99 (1954) .
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Fig. 8 - Nonadditivity parameters for the rare
gases; repulsion, (e*)i, as a function of
dispersion, a*, based on 12-6 potential

parameters.
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Fig. 9 -

Reduced third virial coefficient for the 9-6

potential.

Curve 1: Pairwise additive

Curve 2: Additive plus dispersion nonadditivity

Curve 3: Additive plus dispersion nonadditivity
plus repulsion nonadditivity (Gaussian
model)

Curve 4: Additive plus dispersion nonadditivity
plus repulsion nonadditivity (dis-
tortion model)

Experimental points as in Fig. 7
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Fig. 10 - Reduced third virial coefficient for the
12-6 potential, Labeling of curves and

experimental points as in Fig.9.
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Fig.

11 - Reduced third virial coefficient for the
o -6 potential,
Curve 1l: Pairwise additive
Curve 2: Additive plus dispersion non-
additivity

Experimental points as in Fig. 7
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